
Testing Graph Database Systems via EquivalentQuery Rewriting
Qiuyang Mang∗

qiuyangmang@link.cuhk.edu.cn
School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China

Aoyang Fang∗
aoyangfang@link.cuhk.edu.cn

School of Science and Engineering,
The Chinese University of Hong

Kong, Shenzhen (CUHK-Shenzhen),
China

Boxi Yu
boxiyu@link.cuhk.edu.cn

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China
Shenzhen Research Institute of Big

Data, China

Hanfei Chen
hanfeichen@link.cuhk.edu.cn

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China

Pinjia He†
hepinjia@cuhk.edu.cn

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China
Shenzhen Research Institute of Big

Data, China

ABSTRACT
Graph Database Management Systems (GDBMS), which utilize
graph models for data storage and execute queries via graph tra-
versals, have seen ubiquitous usage in real-world scenarios such as
recommendation systems, knowledge graphs, and social networks.
Much like Relational Database Management Systems (RDBMS),
GDBMS are not immune to bugs. These bugs typically manifest as
logic errors that yield incorrect results (e.g., omitting a node that
should be included), performance bugs (e.g., long execution time
caused by redundant graph scanning), and exception issues (e.g.,
unexpected or missing exceptions).

This paper adapts Equivalent Query Rewriting (EQR) to GDBMS
testing. EQR rewrites a GDBMS query into equivalent ones that
trigger distinct query plans, and checks whether they exhibit dis-
crepancies in system behaviors. To facilitate the realization of EQR,
we propose a general concept called Abstract Syntax Graph (ASG).
Its core idea is to embed the semantics of a base query into the
paths of a graph, which can be utilized to generate new queries
with customized properties (e.g., equivalence). Given a base query,
an ASG is constructed and then an equivalent query can be gener-
ated by finding paths collectively carrying the complete semantics
of the base query. To this end, we further design Random Walk
Covering (RWC), a simple yet effective path covering algorithm. As
a practical implementation of these ideas, we develop a tool GRev,
which has successfully detected 22 previously unknown bugs across
5 popular GDBMS, with 15 of them being confirmed. In particular,

∗Both authors contributed equally to this research.
†Pinjia He is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE 2024, April 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639200

14 of the detected bugs are related to improper implementation of
graph data retrieval in GDBMS, which is challenging to identify for
existing techniques.

KEYWORDS
Graph databases, Metamorphic testing, Query rewriting

ACM Reference Format:
Qiuyang Mang, Aoyang Fang, Boxi Yu, Hanfei Chen, and Pinjia He. 2024.
Testing Graph Database Systems via Equivalent Query Rewriting. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3597503.3639200

1 INTRODUCTION
Graph Database Management Systems (GDBMS) are designed for
storing and executing queries on graph-structured data. Compared
with Relational Database Management Systems (RDBMS), which
store data in tables and columns, GDBMS maintain data in a graph
model consisting of nodes and edges, representing entities and
their relationships. GDBMS provide powerful graph traversal and
pattern-matching capabilities, allowing for flexible and efficient
query of interconnected data. These features make GDBMS par-
ticularly useful and efficient in data-driven applications, such as
recommendation systems, knowledge graphs, and social networks.
For example, Facebook utilizes its own GDBMS named TAO [3]
to store and manage billions of users and their relationships in
social networks. According to DB-Engines Ranking [6], there are
51 widely-used GDBMS, such as Neo4j [26], TinkerGraph [41],
MemGraph [23], and NebulaGraph [24].

Like any other software, GDBMS are not immune to bugs, in-
cluding logic bugs leading to incorrect query results, performance
bugs causing sub-optimal query execution time or even a long
time hang-up, and exception issues such as unexpected and miss-
ing exceptions. These bugs can manifest in various functionalities
of GDBMS, encompassing (1) graph-related bugs that arise from
improper implementation of graph data retrieval in GDBMS (e.g.,
graph pattern matching) and (2) common bugs related to handling

https://doi.org/10.1145/3597503.3639200
https://doi.org/10.1145/3597503.3639200


ICSE 2024, April 2024, Lisbon, Portugal Trovato and Tobin, et al.

Listing 1: A graph-related bug in RedisGraph detected by our
approach, where two equivalent queries result in inconsis-
tent counting results.� �
(1) MATCH (A)-[]->(B :L1), (C)<-[]-(A)

MATCH (C)<-[]-(D :L2)-[]->(D :L2) RETURN COUNT (*) --{7}

(2) MATCH (C)<-[]-(A)-[]->(B :L1)

MATCH (C)<-[]-(D :L2)-[]->(D :L2) RETURN COUNT (*) --{8}� �
functionalities similar to those in RDBMS (e.g., predicates). Listing 1
demonstrates a graph-related logic bug in RedisGraph [31] that was
detected by our approach.1 In the first query, the relationships be-
tween nodes (A) and (B) are retrieved first, and then the relationship
between (A) and (C). In the second query, both relationships are
retrieved simultaneously. RedisGraph returns different results for
these two queries even though they query the same graph data.
This inconsistency indicates the presence of a logic bug during the
graph data retrieval in RedisGraph.

Detecting bugs in GDBMS is very challenging because of the
following reasons. First, unlike RDBMS which uniformly utilize
SQL to access data, different GDBMS adopt different query lan-
guages, such as Neo4j’s Cypher [28], TinkerGraph’s Gremlin [35],
and NebulaGraph’s nGQL [27]. Thus, existing differential testing
tools, like GDsmith [13] and Grand [44], can only test the shared
functionalities of GDBMS that adopt the same query language, such
as Neo4j’s feature of label expressions [25]. Moreover, the adoption
of different query languages can lead to extensive engineering ef-
fort when developers try to generalize existing tools to more query
languages. We think this is the main reason why existing research
focuses on at most two query languages: Cypher and Gremlin.

Second, it is non-trivial to adapt RDBMS testing approaches [2,
32, 33, 36] to GDBMS because it incurs re-implementation under
different database models and query languages. Moreover, this
kind of adaptation can only test the shared functionalities between
RDBMS and GDBMS (e.g., expressions and predicates), leaving
graph-related bugs underexplored. For example, GDBMeter [15],
the only existingmetamorphic testing approach for GDBMS, utilizes
an RDBMS testing approach Ternery Logic Partitioning (TLP) [32],
which partitions a query 𝑄 into sub-queries 𝑄𝑃 , 𝑄¬𝑃 , 𝑄null based
on three possible outcomes of the predicate 𝑃 : true, false, and null.
Thus, although GDBMeter found common bugs related to predicates
handling, none of their reported bugs are graph-related.

Third, performance bugs in GDBMS have not been carefully
considered by existing approaches. Specifically, differential testing
approaches, such as GDsmith [13] and Grand [44], fall short of de-
tecting performance bugs because the diverse underlying architec-
tures of different GDBMS can easily cause performance differences.
The metamorphic testing approach, GDBMeter [15], is based on
the relationship between the original query and three sub-queries,
which do not exhibit clear performance relationships. Thus, it is
difficult for existing approaches to find performance bugs.

To tackle these challenges, this paper adapts Equivalent Query
Rewriting (EQR) to GDBMS testing. For example, the first query

1https://github.com/RedisGraph/RedisGraph/issues/3093

in Listing 1 was re-written to generate the second query as the
equivalent query. If the returned results are different or a large
difference was observed in the query time, a potential bug is found.
To facilitate the realization of EQR in GDBMS, we propose a novel,
widely applicable concept called Abstract Syntax Graph (ASG). The
key insight is to embed the complete semantics of a base query into
the paths of a graph (i.e., ASG). An ASG can be further utilized to
generate queries with customized properties (e.g., equivalence) by
covering different sets of paths in the graph automatically. Intu-
itively, ASG provides an abstraction for a query that can be mapped
to various concrete graph models adopted by different GDBMS and
their query languages. Thus, to generate an equivalent query that
carries the complete semantics encoded in ASG, we need to find a
set of non-overlapping paths that collectively cover all the relation-
ships (i.e., edges) and constraints (i.e., labels and properties). This
path-finding process is further handled by our proposed Random
Walk Covering (RWC), a simple yet effective algorithm. Each set
of the non-overlapping paths returned by RWC will be translated
into an equivalent query. RWC can generate a large number of
equivalent queries that trigger diverse query plans, and thus ef-
fectively stress-test GDBMS. Unlike traditional query rewriting
techniques [21] that rely on multiple hardcoded rules, our methods
do not require domain experts on query languages nor extra engi-
neering resources for identifying and verifying various mutation
rules. In addition, ASG and RWC can be easily adapted to different
query languages, which only incurs lightweight parser develop-
ment. Differently, traditional query rewriting needs to re-identify
mutation rules to conform to different query language grammar.

We have implemented these ideas as a tool called GRev, and
employed it to test five popular GDBMS, namely Neo4j [26], Re-
disGraph [31], MemGraph [23], TinkerGraph [41], and Nebula-
Graph [24], which collectively adopt three different query lan-
guages: Cypher [28], Gremlin [35], and nGQL [27]. As of the time of
writing, GRev has discovered 22 previously unknown bugs in these
GDBMS, including 14 graph-related bugs, of which 15 have been
confirmed. Among the 22 bugs, 12 are logic bugs, 3 are performance
bugs, 4 are missing exceptions, and 3 are unexpected exceptions.

In summary, this paper makes the following contributions.
• We adapt Equivalent Query Rewriting (EQR) to GDBMS testing.
• We propose Abstract Syntax Graph (ASG), a general concept that
encodes the complete semantics of a query in a graph.
• We design a simple yet effective algorithm RandomWalk Covering
(RWC) to generate equivalent queries from ASG.
• We implement these ideas as a tool called GRev and use it to
test 5 widely-used GDBMS, and successfully detect 22 previously
unknown bugs with 15 confirmed and 14 graph-related.

2 BACKGROUND
2.1 Labeled Property Graph in GDBMS
Most GDBMS adopt a labeled property graph (LPG) to store and
query data. As shown in Fig. 1, an LPG contains nodes (e.g., n1, n2
and n3), relationships (e.g., r1 and r2), corresponding labels (e.g., n1
: person and r1 : read), and properties (e.g., name : Alice) for each
node and relationship. The flexible graph structure can efficiently
capture interconnected information regarding entities, relation-
ships, and attributes, whereas RDBMS stores this information using



Testing Graph Database Systems via Equivalent Query Rewriting ICSE 2024, April 2024, Lisbon, Portugal

n2:
book

name: Animal Farm
language: English

n1:
person

name: Alice
age: 18

n3:
person

r1: read r2: write

since: 2023 published: 1945

name: George Orwell
birth: 1903

Figure 1: A labeled property graph (LPG) example, which
contains three nodes (n1, n2 and n3), two relationships (r1
and r2) and their corresponding labels (e.g., n1 : person) and
properties (e.g., age : 18)

.

several tables. Owing to its flexibility and effectiveness in repre-
senting interconnected data, the LPG model has become a crucial
component of GDBMS.

2.2 Query Languages in GDBMS
Unlike RDBMS, which utilizes SQL for creating, modifying, and
retrieving data, graph databases do not have a standardized query
language. Instead, multiple query languages have been developed
for different GDBMS to cater to various application requirements.
For instance, Cypher [28] is a popular SQL-like query language
that employs SQL-like clauses such as MATCH, WHERE, and RETURN to
retrieve data. On the other hand, Gremlin [35] is a widely-used func-
tional query language that expresses queries in a data-flow manner.
Among the top 10 GDBMS according to the DB-Engine Ranking [6],
6 of them support Gremlin or Cypher as their query language.
Therefore, we realize EQR for mainly validating Cypher-based and
Gremlin-based GDBMS. In addition, we tested NebulaGraph [24]
that utilizes their own language nGQL [27] to further verify the
effectiveness and generalizability of our approach.

2.3 Query Rewriting
Query rewriting [30] is a crucial step in RDBMS query optimization,
which primarily aims at transforming an original query into an
equivalent but more efficient form to speed up execution. This trans-
formation is facilitated by a set of hardcoded rewrite rules, which
are selected and applied using a production rule engine, signifi-
cantly improving the efficiency of query execution. AMOEBA [21]
utilizes query rewriting to identify performance bugs in RDBMS,
but it still necessitates the manual definition of rewriting rules by
domain experts.

While inspired by Query Rewriting, our EQR pursues a different
goal, which is to generate numerous equivalent queries automat-
ically with diverse query plans without any hardcoded rules. In
addition, existing query rewriting rules explored in the database
field cannot be used in GDBMS testing because of the following
reasons. First, most query rewriting studies focus on RDBMS and
there is a lack of similar techniques in GDBMS. Second, even if
researchers start to explore rewriting rules in graph databases for
query optimization, which is a challenging research direction, the
equivalent queries generated by them are unlikely to trigger diverse
query plans, because these potential rules would be quickly inte-
grated into the optimizers of graph databases and the equivalent
queries generated by them will be compiled into the same query

MATCH (n1 : person {name: "Alice"})-[r1 : knows]->(n2 : person), (n3 : person {name : "Bob"} )-
[r2 : knows]->(n2 : person), (n2 : person)-[r3 : develops]->(n4 : software) RETURN n2 

MATCH (n4 : software)<-[r3 : develops]-(n2 : person)<-[r1 : knows]-(n1 : person {name: "Alice"}), 
(n2 : person)<-[r2 : knows]-(n3 : person {name : "Bob"} )  RETURN n2 

v1 v2 v3

v4

 person {name: "Alice"}  person {name: "Bob"}

 person

 software

knowsknows
develops

Abstract Syntax Graph

ASG parser

Random Walk Covering

Original Query

Equivalent Query

Figure 2: An illustrative overview of utilizing our Equivalent
Query Rewriting (EQR) approach to rewrite a concrete query
(i.e., finding software developers known by Alice and Bob)
while ensuring the equivalence.

plan. As a result, these methods may not work when newer versions
of DBMS adopt the rewrite rules. Differently, our proposed EQR is
a general methodology for validating GDBMS (different goal) and
is able to generate large numbers of equivalent queries (explained
in Section 3.3), which cannot be easily optimized to the same query
plan, thus solving the previous problems.

3 APPROACH
To tackle the challenge of realizing ERQ in GDBMS, we introduce
a general concept called Abstract Syntax Graph (ASG) (Section 3.1).
The core insight is to encode the complete semantics of the query
into a set of paths that form a graph (i.e., ASG). Then an equiva-
lent query can be generated by finding another set of paths that
cover all the relationships (i.e., edges) and constraints (i.e., labels
and properties) in the ASG. To this end, we also design a simple
but effective path-finding algorithm called Random Walk Covering
(RWC) (Section 3.3). RWC can traverse the ASG in different ways
and return different sets of paths, which will be further translated
into different equivalent queries.

The EQR process, as illustrated in Fig. 2, begins with an ASG
parser transforming the concrete query into its corresponding ASG
representation (Section 3.2). After that, the ASG is fed into the
RWC algorithm (Section 3.3), which generates multiple equivalent
queries. In the following, introduce ASG, ASG parsing, and RWC
in detail.

3.1 Abstract Syntax Graph (ASG)
Various graph database query languages can offer distinct function-
alities, cater to different usage scenarios, and employ unique syntax.
This diversity presents a significant challenge when attempting to
propose a method that supports rewriting equivalent queries for
different query languages universally. Despite this challenge, graph
databases generally share the same fundamental goal of search-
ing for graph components that have certain relationships between
nodes.

Based on this insight, we propose ASG, a general concept that
can represent the semantics of a query, i.e., relationships between



ICSE 2024, April 2024, Lisbon, Portugal Trovato and Tobin, et al.

nodes to be retrieved by the queries and constraints around the
edges or nodes, in a language-independent manner. ASG is not
specifically tailored to any particular query language, which makes
it a flexible and generic representation for various queries. Specifi-
cally, to extend our tool to a new graph query language, developers
only need to provide a translator that translates between the query
language and ASG, rather than writing full-stack code from scratch.

Given a query 𝑄 , an ASG is a directed graph structure that en-
capsulates the relationships between nodes to be retrieved by 𝑄 . In
particular, these relationships are defined as patterns in Cypher [28]
and traversals in Gremlin [35]. In a rigorous formalization, the ASG
of 𝑄 is denoted as 𝐺 (𝑄) = (𝑉 , 𝐸), where
• 𝑉 represents a set of vertices. Each vertex corresponds to a cat-
egory of nodes to be retrieved by 𝑄 , aligned with their specific
constraints defined in 𝑄 (e.g., they must carry certain labels, or
their property values have to satisfy a certain inequality).
• 𝐸 is a set of edges, where each edge links two vertices within
𝑉 , describing the relationship that should be satisfied between
these two categories of nodes.
For instance, consider the ASG in Fig. 2, which illustrates the re-

lationships between the nodes to be retrieved. This ASG comprises
four vertices, namely v1, v2, v3, and v4. These vertices correspond
to four categories of nodes—n1, n2, n3, and n4—to be retrieved, each
paired with specific constraints. As an example, v1 aligns with the
category of nodes labeled as person, with the name property being
“Alice”. Additionally, there are three edges in the ASG: v1→v2,
v2←v3, and v2→v4. These edges illustrate the relationships be-
tween the categories of nodes. For example, the edge v1→v2 indi-
cates that n1 should know n2 for each tuple (n1, n2, n3, n4) among
the retrieved data.

3.2 ASG Parsing
The goal of ASG parsing is to convert the data relationships of
queries, as expressed in the query languages, into a graph repre-
sentation within the ASG. This step incurs lightweight engineering
effort so our method can be easily adapted to other query lan-
guages. In particular, we use around 260 lines of Python code for
Cypher [28] ASG parsers. These parsers translate the diverse syn-
tax and semantics of different query languages into a unified ASG
representation. Specifically, when a GDBMS query aims to search
multiple graph components simultaneously (e.g., simultaneously
finding Alice’s friends and Bob’s friends in the social networks),
this translation also allows for the potential division of a complex
query into multiple ASGs, where each ASG represents a distinct
section of the query.

In our implementation, for Cypher queries, each pattern within
the query is extracted and converted into an individual ASG; and
for Gremlin queries, the start step, end step, and each as() step
are converted into ASG vertices, while the inner traversal steps are
transformed into ASG edges.

3.3 RandomWalk Covering
Given the necessity of expressing queries in linear text, relation-
ships that need to be retrieved are commonly represented by multi-
ple path-like relationships within a GDBMS query. For instance, a
Cypher query’s graph pattern consists of a series of path patterns,

-v2 v3v1

v4

v2 v3v1

v4

v2 v3v1

v4

v2 v3v1

v4

v2 v3v1

v4

ASG

① MATCH (v1)<-(v2)<-(v3)<-(v4), 
② (v4)<-(v2)<-(v1), 
③ (v1)->(v4) RETURN * 

① MATCH (v1)->(v2)->(v4)->(v3), 
② (v1)<-(v2)<-(v3), 
③ (v4)<-(v1) RETURN *

① MATCH (v3)->(v2)->(v4), 
② (v1)<-(v2)->(v1), 
③ (v1)->(v4)->(v3) RETURN * 

① MATCH (v4)->(v3)->(v2), 
② (v2)<-(v1)->(v2), 
③ (v1)->(v4)<-(v2) RETURN *

RWC RWC

RWC RWC

Equivalent Queries

Figure 3: An illustrative example of the process of equivalent
Cypher query generation through RandomWalk Covering
(RWC) on an Abstract Syntax Graph (ASG). Due to the space
limit, four of the equivalent queries are presented.

Algorithm 1: Generating Equivalent Queries from ASG via
RandomWalk Covering.
Data: (𝐺,𝑉 , 𝐸, 𝐷 ) : An ASG𝐺 contains vertices within𝑉 and edges

within 𝐸; 𝐷 : A dict of vertex : {constraints}, where 𝐷 [𝑢 ]
represents the set of constraints associated with vertex 𝑢.

Result:𝑄𝑒 : an equivalent query generated from the ASG.
1 𝑄𝑒 ← an empty GDBMS query ;
2 while𝑉 ≠ ∅ or 𝐸 ≠ ∅ do
3 (𝑃𝑣, 𝑃𝑒 ) ← Randomly select one Path from𝐺 that contains

vertices within 𝑃𝑣 and edges within 𝑃𝑒 ;
4 for 𝑒 ∈ 𝑃𝑒 do 𝐸 ← 𝐸 \ 𝑒 ;
5 𝑃𝑑 ← dict( ) ;
6 for 𝑣 ∈ 𝑃𝑣 do
7 𝑃𝑑 [𝑣 ] ← Randomly select one subset from 𝐷 [𝑣 ] ;
8 𝐷 [𝑣 ] ← 𝐷 [𝑣 ] \ 𝑃𝑑 [𝑣 ] ;
9 if 𝐷 [𝑣 ] = ∅ and no edge connected with 𝑣 ∈ 𝐸 then

𝑉 ← 𝑉 \ 𝑣 ;
10 end
11 𝑄𝑒 ← 𝑄𝑒 ∪ TransPath2Query(𝑃𝑣, 𝑃𝑒 , 𝑃𝑑 ) ;
12 end
13 return𝑄𝑒 ;

while a Gremlin query’s traversal is made up of a series of linear
sub-traversals.

Recognizing this, we can transform an ASG into a sequence of
non-overlapping paths, which covers the ASG (i.e., every relation-
ship and constraint within the ASG is represented by these paths ex-
actly once), thereby corresponding to an equivalent GDBMS query.
For example, as illustrated in Fig. 3, the ASG can be represented by
various path sequences. In these sequences, each path (represented
by a different color) matches a subset of the relationships and con-
straints described by the ASG. Collectively, these paths represent
all the information present in the ASG by covering all its vertices
and edges. These path sequences are then translated into GDBMS
queries, resulting in equivalent queries generated from the ASG.

We propose Random Walk Covering (RWC), a simple and ef-
fective algorithm. RWC generates various non-overlapping path



Testing Graph Database Systems via Equivalent Query Rewriting ICSE 2024, April 2024, Lisbon, Portugal

sequences that cover the ASG. Each edge in the ASG belongs to
exactly one path. The specifics of this algorithm are detailed in
Algorithm 1. The algorithm begins with an empty GDBMS query
𝑄𝑒 (Line 1), and an ASG 𝐺 = (𝑉 , 𝐸, 𝐷), where 𝑉 represents the set
of vertices, 𝐸 the set of edges, and 𝐷 the constraints associated with
each vertex. The algorithm proceeds by selecting paths from𝐺 in
turns, continuing until the entire ASG is covered by the selected
paths (Lines 2-12). In each turn, a random path from 𝐺 is selected,
denoted as (𝑃𝑣, 𝑃𝑒 ), where 𝑃𝑣 and 𝑃𝑒 represent the vertices and the
edges within the path, respectively (Line 2). Every edge 𝑒 in the set
𝑃𝑒 is then removed from the edge set 𝐸, having been covered by
the path (Line 3). Simultaneously, we initialize an empty dictionary
𝑃𝑑 to represent the constraints carried by the path (Line 4). For
every vertex 𝑣 in the set 𝑃𝑣 , a random subset of its constraints is
removed from 𝐷 [𝑣] and assigned to 𝑃𝑑 [𝑣] (Lines 7-8). If all edges
connected with 𝑣 and the constraints on 𝑣 are removed (i.e., 𝐷 [𝑣]
becomes ∅), we then remove 𝑣 from the vertex set 𝑉 , as it and its
constraints have already been covered by selected paths (Line 9).
Subsequently, the TransPath2Query() function is used to translate
the path and its associated constraints back into the query language
of the GDBMS. The resulting query section is then appended to
𝑄𝑒 (Line 11). This process is repeated until all information linked
to 𝐺 has been covered (i.e., 𝑉 = ∅ and 𝐸 = ∅), at which point 𝑄𝑒

becomes an equivalent query that aligns with the ASG (Line 2, 12).
In addition, these equivalent queries will produce diverse query

plans and traversal strategies for retrieving the desired data. For ex-
ample, consider the equivalent Cypher queries MATCH (n1:person)
-[]->(n2:book) and MATCH (n2:book)<-[]-(n1:person). They
can derive different query plans in some GDBMS, with the first
query retrieving all person nodes first, while the second query re-
trieves all book nodes first. Although certain GDBMS can optimize
these two queries into the same query plan (i.e., by searching the
smaller set of nodes first), it becomes challenging to optimize dif-
ferent path sequences into a unified query plan for more complex
queries and path sequences. This limitation arises from the inability
of GDBMS to fully predict the graph structure and the searching
space before query execution. Therefore, RWC on ASGs allows for
comprehensive and effective testing of GDBMS by generating and
executing equivalent queries with various query plans.

4 IMPLEMENTATION
4.1 Implementation Overview
In this study, we have developed a tool called GRev for testing
GDBMS, which encompasses three components: Graph Generator,
Base Query Generator, and Equivalent Query Rewriter.

The overview of GRev is shown in Fig. 4. Initially, we utilize
a graph generator to randomly create a graph schema in the tar-
get graph database, containing labels, properties, nodes, and re-
lationships. Following that, we use the base query generator to
produce a base query, denoted as 𝑄𝑏𝑎𝑠𝑒 . Subsequently, we employ
the equivalent query rewriter, which utilizes the aforementioned
EQR approach, to rewrite 𝑄𝑏𝑎𝑠𝑒 , generating multiple equivalent
queries, denoted as𝑄1,𝑄2, . . . , and𝑄𝑘 , where each querymaintains
the equivalence of 𝑄𝑏𝑎𝑠𝑒 . By executing these queries on the target
graph database, potential bugs can be uncovered if they result in
inconsistent systems behaviors.

 Graph Generator

Base Query
Generator

Qbase

Equivalent Query Rewriter

Q1

Q2

Qk

. . .

Inequivalent Result ?

Graph Database

Equivalent QueriesBase Query

Sending queries 
to GDBMS and 

obtaining results

Figure 4: An overview of GRev, which begins with the Graph
Generator and Base Query Generator to produce a graph
schema and base query, followed by the Equivalent Query
Rewriter to generate several equivalent queries. A bugwill be
detected if these queries yield inconsistent system behaviors.

4.2 Graph Generation
Unlike some testing techniques [13, 15] that are specific to particular
data, our EQR approach can be generally applied to any graph. We
can simply create a random LPG graph schema on the target graph
database by executing the following steps.
• First, create properties and assign them unique names and data
types (e.g., int, float, and string).
• Second, create labels for nodes and relationships, with each label
corresponding to a set of randomly selected properties.
• Third, create nodes and relationships, assigning them random
labels and properties, and then assigning random values to their
properties based on their data-types.

4.3 Base Query Generator
To the best of our knowledge, existing tools for testing GDBMS are
often sensitive to the base query. For instance, differential testing
tools like Grand [44] and GDsmith [13] are limited to using queries
that rely on shared functionalities among the tested graph databases.
Similarly, GDBMeter [15], a tool based on Query Partitioning [32],
requires different validation rules for different queries and may
struggle to handle some widely-used clauses such as DISTINCT.
This is because there can be potential duplicate elements across
the sub-queries, and thus aggregating sub-queries with DISTINCT
clauses may not produce results matching the original query.

However, GRev is designed to be generally applicable to most
base queries, with the only exception of the base queries that may
produce uncertain results, such as those involving the random
LIMIT clauses. Given this, we followed the grammar of GDBMS
query languages to generate syntactically correct base queries. Fur-
thermore, GRev can directly utilize any existing query generators,
such as the generator of GDsmith [13]. We also believe that GRev
will become even more effective in testing GDBMS when query lan-
guage generators with higher coverage and efficiency are developed
in the future.

4.4 Equivalent Query Rewriter and Validation
Rules

GRev can detect multiple types of bugs (i.e., logic bugs, performance
bugs, and exception-related bugs). We employ diverse validation



ICSE 2024, April 2024, Lisbon, Portugal Trovato and Tobin, et al.

rules to identify and differentiate between these bug types. After
generating the graph schema and the base query, GRev employs the
aforementioned EQR approach, as described in Section 3, to gen-
erate multiple equivalent queries. For a pair of equivalent queries
(𝑄𝑎, 𝑄𝑏 ), we denote their results as 𝑅(𝑄𝑎) and 𝑅(𝑄𝑏 ), and their
execution times as 𝑇 (𝑄𝑎) and 𝑇 (𝑄𝑏 ) respectively. We will detect
the potential bugs using the following validation rules, where 𝐸𝑥 is
defined as the set of exceptions that GDBMS may return.

Detecting Logic Bugs. Logic bugs represent a notorious category
of bug that can lead to incorrect query results without triggering
any exceptions or warnings. In GRev, logic bugs can be detected
by comparing the results between the two equivalent queries. For
a pair of equivalent queries (𝑄𝑎, 𝑄𝑏 ), if 𝑅(𝑄𝑎) ≠ 𝑅(𝑄𝑏 ) and no
exceptions are thrown, it will indicate logic bugs in the GDBMS, as
two equivalent queries produce different results without throwing
any exceptions. Specifically, if 𝑅(𝑄𝑎) ≠ 𝑅(𝑄𝑏 ) but exceptions are
thrown, it does not suggest logic bugs. Instead, it points toward
exception-related bugs, which include unexpected exceptions and
missing exceptions.

Detecting Performance Bugs. Performance bugs are also consid-
ered significant bugs in GDBMSs as they have a negative impact on
query response times. In GRev, performance bugs can be detected by
comparing the execution time between the two equivalent queries.
For a pair of equivalent queries (𝑄𝑎, 𝑄𝑏 ), if Equation 1 holds, it
will indicate a performance bug in the GDBMS, as two equivalent
queries result in a significant difference in their execution times.

Specifically, different from the logic bugs, the inconsistency of
the running time between two equivalent queries could stem from
execution environmental factors, potentially causing false alarms.
To balance false alarms and missed detections, we configured 𝐶1 =
0.8 and 𝐶2 = 1000ms, indicating that each test case triggering a
performance bug must have at least 5 × slowdown and a time gap
of 1000ms or more.

max(𝑇 (𝑄𝑎 ),𝑇 (𝑄𝑏 ) ) − min(𝑇 (𝑄𝑎 ),𝑇 (𝑄𝑏 ) )
max(𝑇 (𝑄𝑎 ),𝑇 (𝑄𝑏 ) )

≥ 𝐶1,

max(𝑇 (𝑄𝑎 ),𝑇 (𝑄𝑏 ) ) − min(𝑇 (𝑄𝑎 ),𝑇 (𝑄𝑏 ) ) ≥ 𝐶2,

where𝐶1,𝐶2 are two constant thresholds.

(1)

5 EVALUATION
In this section, we address the following research questions to
evaluate various important aspects of GRev:

• RQ1: Detecting previously unknown bugs. How effective is
GRev at detecting previously unknown bugs in mature GDBMS?
• RQ2: Effectiveness in generating significant test cases. How
effective is GRev in generating test cases that are interpreted into
distinct query plans2, and how many of them trigger bugs?
• RQ3: Comparison with existing techniques. How does the
effectiveness and generalizability of GRev in GDBMS testing
compare to contemporary SOTA approaches?

Table 1: The GDBMS we tested are popular and widely used
and representative.

GDBMS DB-Engine Rank GitHub Stars Initial Release

Neo4j 1 11.6k 2007

RedisGraph 4* 1.9k 2018

MemGraph 7 1.5k 2017

NebulaGraph 9 9.2k 2019

TinkerGraph 31 1.9k 2009

5.1 Experimental Setting
Five widely-used and representative GDBMS are incorporated in
our evaluation (i.e., Neo4j [26], RedisGraph [31], MemGraph [23],
TinkerGraph [40], and NebulaGraph [24]). Table 1 shows the basic
information of the GDBMS selected, including DB-Engines Rank-
ing [6]3, GitHub stars, and their initial release dates. Among these,
Neo4j, RedisGraph, and MemGraph are the most popular open-
source GDBMS that employ Cypher as their query language. Tinker-
Graph, developed by the creators of Gremlin [35], serves as the foun-
dational library for several Gremlin-based GDBMS such as Janus-
Graph [14] and OrientDB [34]. Notably, these four GDBMS have
undergone rigorous testing by existing works (e.g., GDsmith [13],
Grand [44], and GDBMeter [15]). Therefore, any previously un-
known bugs we discovered on these databases highlight the profi-
ciency of GRev. Additionally, we tested NebulaGraph, a widely-used
GDBMS integrating its own query language, demonstrating the
generalizability of GRev across multiple query languages.

We tested the most recent versions of the GDBMS at the time of
this work, which were Neo4j 5.6.0, RedisGraph 6.2.6-v7, MemGraph
2.8.0, TinkerGraph 3.6.0, and NebulaGraph 3.5.0. All experiments
are conducted on a Linux (Ubuntu 22.04 LTS) workstation, equipped
with a 13th Gen Intel(R) Core(TM) i5-13400 and 128 GB of memory.

5.2 Detecting Previously Unknown Bugs
An Overview of Detected Bugs. We detected 22 previously un-

known bugs across five GDBMS, with 15 confirmed by developers.
In addition to these bugs, 3 reported bugs in Neo4j [26] are already
known to developers but not publicly disclosed. These were fixed
in the latest Neo4j version and are not considered detected bugs.
In addition, one identified Neo4j issue involved developers inten-
tionally withholding an exception for new features. Though this
exception is unexpected in both previous and future versions, we
do not classify it as a confirmed bug.

Table 2 shows the overall bug statistics. Out of 22 reported bugs,
12 are logic bugs, 3 are performance bugs, 4 are missing exceptions,
and 3 are unexpected exceptions. Among these bugs, 15 of them
have been fixed or confirmed by the developers, while the status of
the remaining 11 bugs is still pending. Upon a detailed investiga-
tion of these bugs’ manifestations, we further identified 14 of them
as graph-related. These bugs arise from improper implementation
of graph data retrieval in GDBMS (e.g., MATCH clause in Cypher),

2In GDBMS, distinct query plans mean that two functionally equivalent queries are
executed using different strategies, not just differing in their textual representation. .
3Statistics as of July 2023, where RedisGraph’s rank (4*) includes secondary database
models.



Testing Graph Database Systems via Equivalent Query Rewriting ICSE 2024, April 2024, Lisbon, Portugal

Table 2: Summary of Detected Bugs: During our testing of 5 different GDBMS adopting 3 distinct query languages, we discovered
a total of 22 previously unknown bugs, 15 already confirmed by the developers. Of the 22 reported bugs, 12 are logic bugs, 3 are
performance bugs, 4 are missing exceptions, and 3 are unexpected exceptions.

GDBMS Query Language Detected Confirmed Logic Bugs Performance Bugs Missing Exceptions Unexpected Exceptions Graph-related

Neo4j Cypher 3 2 0 0 2 1 1

RedisGraph Cypher 6 2 4 1 0 1 4

MemGraph Cypher 4 3 3 0 1 0 3

TinkerGraph Gremlin 3 2 2 0 1 0 2

NebulaGraph nGQL 6 6 3 2 0 1 4

Total 22 15 12 3 4 3 14

rather than common functionalities shared with RDBMS (e.g., pred-
icates). Notably, these bugs were rarely detected by the existing
techniques, especially for GDBMeter [15], which reused the test
oracles designed for RDBMS (i.e., TLP [32]).

Selected Interesting Bugs. To provide an insight into the variety
of bugs that GRev is capable of identifying, we present a selection
of interesting cases discovered by our approach. For brevity, we
present simplified test cases (without showing graph data) for better
understanding.

Listing 2: MemGraph (logic bug, graph-related bug) - Re-
turning unmatched data when executing MATCH clauses after
OPTIONAL MATCH clauses.� �
(1) MATCH (n0 :L3)<-[r0 :T1]-(n1)

OPTIONAL MATCH (n2 :L2)<-[]-(n1 :L1), (n1 :L1)-[]->(n0)

WITH * MATCH (n0)<-[]-(n1)-[]->(n2) WITH * RETURN *

--{n0 : 19244, n1 : 19230, n2 : 19328, r0: 85207} ✓✓✓

(2) MATCH (n0 :L3)<-[r0 :T1]-(n1)

OPTIONAL MATCH (n0)<-[]-(n1 :L1)-[]->(n2 :L2)

WITH * MATCH (n0)<-[]-(n1)-[]->(n2) WITH * RETURN *

--{n0 : 19244, n1 : 19230, n2 : 19328, r0: 85207}

--{n0 : 19317, n1 : 19223, n2 : null , r0: 85206} � �
Bug 1: As shown in Listing 2, these two queries first identify a
specific node and relationship pattern with MATCH, then explore
additional nodes and relationships that might be connected but are
not guaranteed to exist using OPTIONAL MATCH, at last use MATCH
again to get the satisfied node and relationships. When execut-
ing the first query, which represents the pattern in the OPTIONAL
MATCH clause in a single path, MemGraph [23] produces the correct
result.4 However, when executing the second query, which is equiv-
alent to the first one but represents the pattern in the OPTIONAL
MATCH clause as two separate paths, an extra and unwanted row
(i.e., n0: 19317, n1: 19223, n2: null, r0: 85206) is returned. This row
is invalid because n2 should match a non-empty node in the last
MATCH clause. The main cause of this bug is the improper optimiza-
tion of the MATCH clauses following the OPTIONAL MATCH clauses
in MemGraph. During our continued investigation, the key to de-
tecting this bug involves using ASG to represent a pattern with

4https://github.com/memgraph/memgraph/issues/948

two paths (shown in (1)) as an equivalent form to that with only
one path (shown in (2)), while additional transformations, such as
reversing the edges in the pattern, will still yield identical results.
Additionally, during the developer’s investigation of this test case,
they discovered another bug that results in the logic inconsistency
shown in Listing 2. Therefore, we find this bug interesting as it
showcases the potential of a single test case generated by GRev to
uncover multiple real bugs in GDBMS.

Listing 3: RedisGraph (logic bug, common bug) - Return-
ing non-existent data when executing WHERE clauses after
OPTIONAL MATCH clauses.� �
(1) MATCH Pattern(A) WITH n8 OPTIONAL MATCH

(n7:L1)-[r7:T1]->(n10), (n2)<-[r9:T1]-(n12)

RETURN n7.id --{n7.id : 120} ✓✓✓

(2) MATCH Pattern(A) WITH n8 OPTIONAL MATCH

(n7:L1)-[r7:T1]->(n10), (n2)<-[r9:T1]-(n12)

WHERE (n7.id = 117) RETURN n7.id --{n7.id : 117} � �
Bug 2: As shown in Listing 3, the first query showcases a scenario
in RedisGraph [31], where a complex pattern, denoted as Pattern(A),
is matched first, followed by the usage of an OPTIONAL MATCH clause
to retrieve additional data.5 After the traversal process, only one
node (n7.id : 120) is retrieved by the first query. However, when
executing the second query in RedisGraph, which includes an ad-
ditional WHERE clause to filter the node (n7.id : 117) at the end of
the query, RedisGraph still returns a node with id : 117. This result
is incorrect since there should be no node with id : 117 based on
the outcome of the first query, and thus the second query should
have returned an empty result. The main cause of this bug is the
incorrect implementation of WHERE clauses. This demonstrates the
versatility of GRev in testing various functionalities beyond graph-
related bugs. Note the two queries are not equivalent because they
are reduced and slightly modified to better reveal the root cause of
the bug in the bug report.
Bug 3: As shown in Listing 4, the execution time of the second
query in RedisGraph is approximately 9 × slow down than that
of the first query.6 However, both queries are equivalent; the only
difference is the presence of a redundant node (n0) in the second

5https://github.com/RedisGraph/RedisGraph/issues/3100
6https://github.com/RedisGraph/RedisGraph/issues/3091



ICSE 2024, April 2024, Lisbon, Portugal Trovato and Tobin, et al.

Listing 4: RedisGraph (performance bug) - Performance in-
consistency caused by duplicated node in the MATCH clauses.� �
(1) MATCH (n0 :L3 :L2), (n1 :L0)

MATCH (n2 :L1)<-[r2 :T4]-(n3 :L3), (n0 :L3)

WITH n2 MATCH (n4 :L3)<-[r3 :T3]-(n1), (n0)

WHERE (n2.k7) RETURN COUNT (*) --{performance : 0.54s} ✓✓✓

(2) MATCH (n0 :L3 :L2), (n1 :L0)

MATCH (n2 :L1)<-[r2 :T4]-(n3 :L3), (n0 :L3), (n0)

WITH n2 MATCH (n4 :L3)<-[r3 :T3]-(n1), (n0)

WHERE (n2.k7) RETURN COUNT (*) --{performance : 4.82s} � �

Figure 5: GRev Analysis: How many different equivalent
queries can be generated from the 10 base queries within the
specified number of generations?

query, and this redundant node causes an inefficient query plan,
involving unnecessary scanning and Cartesian product operations
for all nodes (n0), resulting in significant time overheads. The
root cause of this bug lies in the lack of optimization of MATCH
clauses during query plan generation. This test case highlights the
capability of GRev in detecting performance bugs.

5.3 Test Cases Analysis
To investigate the capability of GRev in generating high-quality
equivalent queries with diverse query plans, we conducted empiri-
cal experiments to answer the following questions:

• RQ2 (a): How diverse are the equivalent queries generated by
GRev for each base query?
• RQ2 (b): How diverse are the query plans generated by GRev
for each base query?
• RQ2 (c): What proportion of the test cases generated by GRev
are bug-triggering?

To address RQ2 (a) and RQ2 (b), we generate base queries using
a standard query generator of GDsmith [13] for efficient analysis.
The reason for using the third-party query generator here is to
reduce the bias introduced by the generator. We focused on two
groups of base queries:

Figure 6: GRevAnalysis: Howmany different query plans can
be generated from the 10 base queries within the specified
number of generations?

• Random Base Queries: This involved randomly selecting 10 base
queries from a set of 5,000 queries generated by GDsmith.
• Long Base Queries: This involved selecting the top 10 longest base
queries from the same set of 5,000 queries.

We then employed our EQR approach to generate 300 equiva-
lent queries for each base query and derived their query plans in
RedisGraph 6.2.6-v7. Our analysis involved tracking the number of
distinct queries and query plans observed within the set of equiva-
lent queries. We conducted the experiment 50 times, and took the
average results presented in Fig. 5 and Fig. 6.

Will GRev fall into generating duplicated queries? As shown
in Fig. 5, GRev demonstrates its effectiveness in generating di-
verse equivalent queries: (2,394/3,000) unique equivalent for ran-
dom base queries and (3,000/3,000) unique equivalent queries for
long base queries, which means GRev can keep generating diverse
queries. As shown in Fig. 6, GRev is also effective and efficient in
generating diverse query plans. Specifically, we use 10 base queries
(random or long), ask GRev to generate equivalent queries, and
record the number of distinct query plans triggered by the equiva-
lent queries. We can observe that when asking GRev to generate 30
equivalent queries for each base query (300 in total), we can obtain
63 distinct query plans for random base queries and 227 distinct
query plans for long base queries. The number of distinct query
plans obtained for a base query increases as the number of gener-
ated equivalent queries increases. If we generate 3,000 equivalent
queries for the 10 random base queries (300 each), we can obtain 178
distinct query plans (the rightmost pink bar in Fig. 6), averaging 17.8
distinct plans per base query. Similarly, we can obtain 1253 distinct
query plans (the rightmost yellow bar in Fig. 6), averaging 125.3
distinct query plans per base query. Thus, we believe the equivalent
queries generated by GRev can trigger distinct query plans. In con-
trast, existing techniques based on certain query transformations,
such as GDBMeter [15], can only trigger 1 (from the base query)
+ 3 (from three sub-queries) = 4 distinct query plans. Moreover,
differential testing tools like GDBMeter and Grand are restricted to
triggering only one query plan in each target GDBMS for a given
base query. Consequently, when executing differential testing on



Testing Graph Database Systems via Equivalent Query Rewriting ICSE 2024, April 2024, Lisbon, Portugal

Table 3: Comparing GRev with Existing Techniques

Tool Approach Supported Languages Able to detect
shared bugs

Able to test
unique features

Insensitive to
base query

Detected
performance bugs

Detected
graph-related bugs

GDsmith Differential Testing Cypher # # # #  
Grand Differential Testing Gremlin # # # # #

GDBMeter Query Partitioning Cypher, Gremlin   # # #
GRev Query Rewriting Cypher, Gremlin, nGQL   G#   

three GDBMS simultaneously, these tools can only activate three
distinct query plans for each base query.

To investigateRQ2 (c), we executed 1,250,000 test cases on Redis-
Graph [31] within a 12-hour window, where each test case includes
one base query and one equivalent query. Among these test cases,
(945/1,250,000) managed to trigger bugs, of which 936 are logic
bugs and 9 are performance bugs. This result indicates that on aver-
age, GRev is able to identify one bug-triggering test case executing
for every 1,322 test case executions. In our practical testing, it takes
an average of one minute to identify a bug-triggering test case.

In summary, the analysis of the test cases above demonstrates the
high effectiveness and efficiency of GRev in generating high-quality
test cases and triggering bugs.

5.4 Analytical Comparison with Existing
Techniques

As shown in Table 3, there are three closest-related works in testing
GDBMS, i.e., GDsmith [13], Grand [44], and GDBMeter [15], that
can detect bugs other than crashes. Specifically, GDsmith and Grand
are based on Differential Testing [38] while GDBMeter is based on
Query Partitioning [32] (i.e., partitioning query into multiple equiv-
alent sub-queries). Notably, we can not compare GRev with RDBMS
testing tools, such as SQLancer [33]. Although GRev and these tools
both test the bugs in database systems, their target databases have
fundamental differences, in terms of data structures (e.g., graph
model vs. relational model), query mode (e.g., traversals vs. joins),
and languages (e.g., Cypher [28], Gremlin [35], and nGQL [27] vs.
SQL).

Even for testing the GDBMS that adopt the same query lan-
guages, different GDBMS can have their unique design or adopt
some shared libraries with other GDBMS. In the first case, these
differential testing tools are sensitive to queries or are prone to
give false positives. For example, MemGraph [23] and Neo4j [26]
will deliberately return different results for the same query MATCH
()-[r]-(), and thus GDsmith does not test such queries to avoid
false alarms. In the second case, these tools are prone to give false
negatives. In addition, GDsmith and Grand face challenges in de-
tecting performance bugs by comparing performance discrepancies,
as different target GDBMSs have varying underlying architectures.

Based on Query Partitioning, GDBMeter [15] leverages the test
oracle called Ternary Logic Partitioning (TLP) to detect bugs in
GDBMS. TLP [32] was initially introduced in testing RDBMS. It in-
volves partitioning a query𝑄 into sub-queries𝑄𝑃 , 𝑄¬𝑃 , 𝑄null based
on three possible outcomes of the predicate 𝑃 : true, false, and null.
However, this partitioning approach is sensitive to query and query
language. For example, where the query includes functionalities
such as removing duplicate elements, aggregating the sub-queries
may no longer produce an equivalent result to the original query.

Listing 5: An example of GDBMeter’s missed bug-triggering
test cases of the bug shown in Listing 2, where the aggregation
of the results from the three sub-queries still produces the
same incorrect result as the original query, which leads to
the bug being missed.� �
(TLP : 𝑄𝑃 ) MATCH (n0 : L3)<-[r0 : T1]-(n1)

OPTIONAL MATCH (n0)<-[]-(n1 : L1)-[]->(n2 : L2)

WITH * MATCH (n0)<-[]-(n1)-[]->(n2) WITH *

WHERE (ID(n2) > ID(n0)) RETURN *

--{n0 : 19244, n1 : 19230, n2 : 19328, r0: 85207}

(TLP : 𝑄¬𝑃 ) MATCH (n0 : L3)<-[r0 : T1]-(n1)

OPTIONAL MATCH (n0)<-[]-(n1 : L1)-[]->(n2 : L2)

WITH * MATCH (n0)<-[]-(n1)-[]->(n2) WITH *

WHERE NOT (ID(n2) > ID(n0)) RETURN * --{}

(TLP : 𝑄null) MATCH (n0 : L3)<-[r0 : T1]-(n1)

OPTIONAL MATCH (n0)<-[]-(n1 : L1)-[]->(n2 : L2)

WITH * MATCH (n0)<-[]-(n1)-[]->(n2) WITH *

WHERE (ID(n2) > ID(n0)) IS NULL RETURN *

--{n0 : 19317, n1 : 19223, n2 : null , r0: 85206}� �
As a result, GDBMeter is unable to effectively test queries that
involve DISTINCT clauses in Cypher [28] and dedup() clauses in
Gremlin [35]. Similarly to Grand [44] and GDsmith [13], GDBMeter
also lacks general support for multiple query languages in GDBMS.
For example, since Gremlin lacks steps to check for null values
in expressions, GDBMeter can only test Gremlin-based GDBMS
when working with graphs that do not contain null values. In addi-
tion, TLP can only be applied to filter clauses (e.g., WHERE), and is
not capable of effectively modifying query plans of the traversal
process (e.g., MATCH), resulting in GDBMeter facing challenges in
finding traversal bugs. For example, as shown in Listing 5, the TLP
approach fails to generate bug-triggering test cases for the graph-
related bugs shown in Listing 2. Specifically, after conducting a
thorough investigation of GDBMeter’s bug reports, we found that
all of the logic bugs were triggered by queries that contain only
a simple MATCH (n) clause or return a mathematical expression
directly. This implies that the root causes of their detected logic
bugs lie solely in the implementations of predicates and expressions,
with no relation to the graph itself.

5.5 Empirical Comparison with Existing
Techniques

To better compare with previous works, we conducted two empir-
ical experiments, each corresponding to code coverage, and bug



ICSE 2024, April 2024, Lisbon, Portugal Trovato and Tobin, et al.

Table 4: Graph Databases and Versions of Previous Works
Tested

Tool Graph Database Versions

GDsmith

Neo4j Community Edition 3.5,4.2,4.3,4.4,4.5

RedisGraph 2.8

Memgraph Community Edition 2.4

GDBmeter
Neo4j Community Edition 4.4.8,4.4.9

RedisGraph 2.8.19

Grand TinkerGraph 3.4.10

Table 5: Bug Reproducing on Different GDBMS, where all
indicates that all the versions of database mentioned in Table
4 are tested.

Graph Database Version Reproduced

Redis Graph all 5/6

Memgraph all 3/4

TinkerGrpah all 1/3

Total NA 9/13

reproduction. As shown in Table 4, we choose those tools that test
the shared databases with us.7

The 24-Hour Testing Coverage Comparison. We compare
GRev’s coverage with GDBmeter and GDsmith on RedisGraph,
and GDsmith on Neo4j.8 To be fair, GRev uses GDsmith to generate
the base queries in this experiment. As shown in Figure 7, the result
of testing Neo4j shows that GRev has higher instruction cover-
age and branch coverage compared to other testing frameworks,
which means GRev has the capability to trigger more instruction-
s/branches related to query plan, given a fixed query generator.
The result of testing RedisGraph shows that GDBmeter has higher
code coverage than others, and GRev yields the same coverage
as GDsmith, which indicates that Neo4j may have more optimiza-
tions than RedisGraph. We think GDsmith produces certain queries
based on the template, which restricts the diversity of queries. On
the other hand, the base queries produced in GDBmeter are more
diverse, thus having higher coverage. Specifically, we posit that
if GRev employs some identical generator as GDBMeter, it could
achieve at least the same code coverage as that from GDBMeter in
RedisGraph.

Bug Reproduce Comparison. To assess whether other tools
can detect the bugs identified by GRev, a straightforward approach
is to attempt to reproduce these bugs on the versions of databases
tested by those tools. If these successfully reproduced bugs were
indeed found by other tools, they would likely have been reported
to developers and subsequently fixed. We conducted tests on the
GDBMS listed in Table 4. Our focus was on reproducing bugs ini-
tially detected in MemGraph, RedisGraph and TinkerGraph across

7Grand is excluded in the first two experiments, due to the missing YAML configura-
tions for databases.
8GDBmeter can not be compared in Neo4j, since the configuration for Neo4j is missing
in GDBmeter.

Instruction Branch Line Method Class
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
ve

ra
ge

 p
er

ce
nt

ag
es

20.8%

12.4%

31.7%

15.0%

33.3%

23.2%

14.3%

35.7%

16.8%

36.0%
24-Hours Code Coverages of Neo4j

GDsmith
GRev

(a) Code Coverages of Neo4j

Line Function Branch
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Co
ve

ra
ge

 p
er

ce
nt

ag
es

16.3% 16.4%

8.3%

21.4% 21.3%

11.3%

16.3% 16.4%

8.3%

24-Hours Code Coverages of RedisGraph
GDsmith
GDBMeter
GRev

(b) Code Coverages RedisGraph

Figure 7: 24-Hours Code Coverages Comparison

all versions examined by existing methodologies. This investigation
aimed to determine whether these bugs existed in early versions
and were overlooked by prior testing efforts. Note that we do not
manually examine bug reports from other tools because they often
report complex test cases that trigger bugs without specifying the
root cause. It is challenging and time-consuming to manually check
whether these reports are identical to the bugs found by GRev.

The results in Table 5 show that 69% (9/13) of the bugs detected
by GRev can be reproduced in earlier versions, except for Neo4j.
This is attributed to the discovery of new bugs, particularly those re-
lated to Neo4j’s new features, such as label expression. The existing
methods focus on transformation rules for shared functionalities
with RDBMS, leaving graph-related bugs in early versions unde-
tected. This empirical evidence underscores the effectiveness of
GRev in uncovering bugs that may go unnoticed by other tools.

6 DISCUSSION
6.1 Threats to Validity
First, while GRev tests GDBMS automatically, bugs require manual
reduction and reproduction, possibly introducing errors. To miti-
gate this, three individuals carefully study both the original bugs
and the reduced bugs and reach a consensus before reporting them
to the developers. Second, given the diversity of GDBMS query
languages, testing GRev’s universality across all isn’t feasible. To
address this limitation, we focus on the three most popular query
languages based on the DB-Engine Ranking. Third, there is no



Testing Graph Database Systems via Equivalent Query Rewriting ICSE 2024, April 2024, Lisbon, Portugal

well-established performance inconsistency standard in GDBMS
for performance bugs. Thus, the thresholds used might lead to false
alarms. To mitigate this, we set a time difference threshold to filter
out possible false alarms, similar to AMOEBA and Apollo, the exist-
ing works in detecting logic issues in RDBMS. In addition, we will
automatically reproduce the performance-inconsistent test cases
5 times once it was detected, to ensure they can trigger the bugs
stably. As a result, none of our reports of performance issues have
been rejected (false alarms).

6.2 Equivalent Queries Generated by RWC
RWC is capable of generating a substantial number of equivalent
queries for any given ASG. The quantity of equivalent queries
produced by RWC equals or surpasses the number of different
ordered path-covering schemes of𝐺 . For the path-covering schemes
within a given 𝐺 , a relaxed lower bound can be established by
exclusively considering paths of length 1 (i.e., paths collapsing into
edges) for covering𝐺 . Under this scenario, supposing the number
of edges of 𝐺 is |𝐸 |, we can create |𝐸 |! distinct order of placing
edges, where each edge (denoted as <a, b>) can be represented in
two forms (i.e., <a, b> and <b, a>), resulting in 2 |𝐸 | various edge
representations. Thus, even when we limit the cases to paths in
the RWC to single edges, there remain 2 |𝐸 | |𝐸 |! diverse equivalent
queries (i.e., path-covering schemes) that can be derived from the
ASG. For instance, when |𝐸 | = 5, this lower bound equals 3840.

7 RELATEDWORK
Differential Testing. Differential testing is a widely employed tech-
nique for bug detection in systems. The fundamental idea behind it
[10, 22] is to verify that, for a given input, different systems produce
identical execution results. Leveraging this principle, differential
testing effectively identifies inconsistencies between systems and
finds practical applications in diverse research domains, includ-
ing binary program analysis [29], desktop hardware evaluation
[11], JVM investigations [4, 5], debugger assessments [18], AI sys-
tems examination [1, 7–9, 20], object-relational mapping systems
[37], etc. Grand [44] and GDsmith [13] represent two established
and prominent differential testing tools specifically designed for
GDBMS. However, they can not support different query languages,
provide test oracles for the single target GDBMS, and detect shared
bugs across multiple GDBMS. In this work, our EQR approach ad-
dresses these challenges by providing a universal framework ASG
and a test oracle based on metamorphic testing.

Metamorphic Testing.Metamorphic testing has been successfully
applied in various domains [12, 19, 42, 43]. For example, Orion [16],
Athena [17], and Hermes [39] introduce metamorphic testing tech-
niques in compilers such as equivalent dead code mutation and
equivalent live code mutation to identify logic bugs within the com-
piler. Based on metamorphic testing, GDBMeter [15] is the SOTA
tool for detecting logic bugs in GDBMS. However, none of the
graph-related bugs have been detected by it due to reusing TLP[32],
a metamorphic relation for RDBMS. In this work, we propose a
novel and more effective metamorphic testing method for GDBMS
that can detect graph-related bugs and common bugs shared with
RDBMS.

Equivlanet Rewriting in RDBMS Testing. Both AMOEBA[21] and
GRev are able to generate equivalent queries to trigger performance
bugs in the database. AMOEBA supports 75 mutation rules defined
by domain experts, which incurs domain knowledge and extensive
effort in rule validation. However, our work does not need extra
rules to define the transformation process. Our EQR only depends
on the original ASG and uses RWC to automatically generate large
numbers of equivalent queries (Section 3.3). This means, for a spe-
cific query, AMOEBA can generate at most 75 equivalent queries,
while GRev can generate equivalent queries exponentially.

8 CONCLUSION
This paper adapts Equivalent Query Rewriting to GDBMS testing,
with two proposed key ideas: (1) Abstract Syntax Graph (ASG), a
general concept facilitating the generation of queries with cus-
tomized properties, and (2) Random Walk Covering (RWC), a simple
but effective algorithm for finding paths in an ASG. In addition
to equivalence, we believe ASG and RWC can be easily adapted
to generate queries with other properties (e.g., queries that should
return a subset of the results of the based query), leading to the
design of various testing approaches. As a practical realization of
these ideas, we developed a tool called GRev. GRev has been proven
effective on 5 popular GDBMS, uncovering 22 previously unknown
bugs, including logic bugs, performance bugs, and exception issues.
In particular, GRev successfully found 14 bugs that are related to
improper implementation of graph data retrieval in GDBMS, which
is different from existing techniques that mainly report bugs related
to similar functionalities in RDBMS. In addition, the GDBMS tested
collectively adopt three different query languages, which is the
most compared to existing research.

9 DATA AVAILABILITY
Codes for GRev and for reproducing all the experimental results
are available at GitHub.9

ACKNOWLEDGMENTS
We thank the anonymous ICSE reviewers for their valuable feedback
on the earlier draft of this paper. We also want to thank all the
GDBMS developers for responding to our bug reports as well as
analyzing the bugswe reported.We especially want to thankWenlin
Wu, a NebulaGraph developer, for his insightful feedback on the
performance issues and for taking all the reported bugs seriously
and quickly. This paper was supported by the National Natural
Science Foundation of China (No. 62102340), Shenzhen Science and
Technology Program, and Shenzhen Research Institute of Big Data.

REFERENCES
[1] Muhammad Hilmi Asyrofi, Zhou Yang, and David Lo. 2021. Crossasr++: A

modular differential testing framework for automatic speech recognition. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1575–
1579.

[2] Jinsheng Ba and Manuel Rigger. 2023. Testing Database Engines via Query Plan
Guidance. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 2060–2071. https://doi.org/10.1109/ICSE48619.2023.00174

[3] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark

9https://github.com/CUHK-Shenzhen-SE/GRev

https://doi.org/10.1109/ICSE48619.2023.00174
https://github.com/CUHK-Shenzhen-SE/GRev


ICSE 2024, April 2024, Lisbon, Portugal Trovato and Tobin, et al.

Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In
2013 USENIX Annual Technical Conference (USENIX ATC 13). USENIX Associa-
tion, San Jose, CA, 49–60. https://www.usenix.org/conference/atc13/technical-
sessions/presentation/bronson

[4] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of JVM
implementations. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1257–1268.

[5] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 85–99.

[6] Dbrank. 2023. DB-Engines Ranking of Graph DBMS. https://db-engines.com/en/
ranking/graph+dbms

[7] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2022. Fuzzing deep-learning libraries via large language models. arXiv
preprint arXiv:2212.14834 (2022).

[8] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing
Yang, and Lingming Zhang. 2023. Large language models are edge-case fuzzers:
Testing deep learning libraries via fuzzgpt. arXiv preprint arXiv:2304.02014 (2023).

[9] Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing
deep-learning libraries via automated relational api inference. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 44–56.

[10] Robert B Evans and Alberto Savoia. 2007. Differential testing: a new approach
to change detection. In The 6th Joint Meeting on European software engineering
conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering: Companion Papers. 549–552.

[11] Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized differential
testing as a prelude to formal verification. In 29th International Conference on
Software Engineering (ICSE’07). IEEE, 621–631.

[12] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-invariant testing for
machine translation. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 961–973.

[13] Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and
Tao Xie. 2023. GDsmith: Detecting bugs in Cypher graph database engines. In
Proceedings of ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA).

[14] JanusGraph. 2023. JanusGraph. https://janusgraph.org/
[15] Matteo Kamm, Manuel Rigger, Chengyu Zhanga, and Zhendong Su. 2023. Testing

Graph Database Engines via Query Partitioning. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis.

[16] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. ACM Sigplan Notices 49, 6 (2014), 216–226.

[17] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs
via guided stochastic program mutation. ACM SIGPLAN Notices 50, 10 (2015),
386–399.

[18] Daniel Lehmann and Michael Pradel. 2018. Feedback-directed differential testing
of interactive debuggers. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 610–620.

[19] Mikael Lindvall, Dharmalingam Ganesan, Ragnar Árdal, and Robert E Wiegand.
2015. Metamorphic model-based testing applied on NASA DAT–An experience
report. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, Vol. 2. IEEE, 129–138.

[20] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. Nnsmith: Generating diverse and valid test cases for deep
learning compilers. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2. 530–543.

[21] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. 2022. Automatic detection
of performance bugs in database systems using equivalent queries. In Proceedings
of the 44th International Conference on Software Engineering. 225–236.

[22] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[23] MemGraph. 2023. MemGraph. https://memgraph.com/
[24] NebulaGraph. 2023. NebulaGraph. https://www.nebula-graph.io/
[25] Neo4j. 2023. Cypher Features Implemented by Neo4j. https://neo4j.com/docs/

cypher-manual/current/queries/basic/#find-connected-nodes
[26] Neo4j. 2023. Neo4J. https://neo4j.com/
[27] nGQL. 2023. nGQL. https://docs.nebula-graph.io/1.2.0/manual-EN/1.overview/1.

concepts/2.nGQL-overview/
[28] openCypher. 2023. openCypher. https://opencypher.org/
[29] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and

Suman Jana. 2017. Nezha: Efficient domain-independent differential testing. In
2017 IEEE Symposium on security and privacy (SP). IEEE, 615–632.

[30] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. 1992. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data (San Diego, California,
USA) (SIGMOD ’92). Association for Computing Machinery, New York, NY, USA,
39–48. https://doi.org/10.1145/130283.130294

[31] Redis. 2023. RedisGraph. https://docs.redis.com/latest/stack/deprecated-features/
graph/

[32] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via
Query Partitioning. Proc. ACM Program. Lang. 4, OOPSLA, Article 211 (nov 2020),
30 pages. https://doi.org/10.1145/3428279

[33] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis.. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), Vol. 20. 667–682.

[34] Daniel Ritter, Luigi Dell’Aquila, Andrii Lomakin, and Emanuele Tagliaferri. 2021.
OrientDB: A NoSQL, Open Source MMDMS. In Proceedings of the The British
International Conference on Databases 2021, London, United Kingdom, March 28,
2022 (CEUR Workshop Proceedings, Vol. 3163). CEUR-WS.org, 10–19.

[35] Marko A. Rodriguez. 2015. The Gremlin Graph Traversal Machine and Language.
CoRR abs/1508.03843 (2015). arXiv:1508.03843

[36] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei,
Hua Zhong, and Tao Huang. 2023. Testing Database Systems via Differential
Query Execution. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). 2072–2084. https://doi.org/10.1109/ICSE48619.2023.00175

[37] Thodoris Sotiropoulos, Stefanos Chaliasos, Vaggelis Atlidakis, Dimitris Mitropou-
los, and Diomidis Spinellis. 2021. Data-oriented differential testing of object-
relational mapping systems. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 1535–1547.

[38] Rainer Storn and Kenneth Price. 1997. Differential evolution–a simple and
efficient heuristic for global optimization over continuous spaces. Journal of
global optimization 11, 4 (1997), 341–359.

[39] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In Proceedings of the 2016 ACM SIGPLAN international conference
on object-oriented programming, systems, languages, and applications. 849–863.

[40] TigerGraph. 2023. TigerGraph. https://www.tigergraph.com
[41] TinkerGraph. 2023. TinkerGraph. https://github.com/tinkerpop/blueprints/wiki/

tinkergraph
[42] Boxi Yu, Yiyan Hu, Qiuyang Mang, Wenhan Hu, and Pinjia He. 2023. Automated

Testing and Improvement of Named Entity Recognition Systems. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (, San Francisco, CA, USA,) (ESEC/FSE
2023). Association for Computing Machinery, New York, NY, USA, 883–894.
https://doi.org/10.1145/3611643.3616295

[43] Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, Yuancheng Wang, and Pinjia
He. 2022. Automated testing of image captioning systems. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
467–479.

[44] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-Based
Graph Database Systems via Randomized Differential Testing. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New
York, NY, USA, 302–313. https://doi.org/10.1145/3533767.3534409

https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://janusgraph.org/
https://memgraph.com/
https://www.nebula-graph.io/
https://neo4j.com/docs/cypher-manual/current/queries/basic/#find-connected-nodes
https://neo4j.com/docs/cypher-manual/current/queries/basic/#find-connected-nodes
https://neo4j.com/
https://docs.nebula-graph.io/1.2.0/manual-EN/1.overview/1.concepts/2.nGQL-overview/
https://docs.nebula-graph.io/1.2.0/manual-EN/1.overview/1.concepts/2.nGQL-overview/
https://opencypher.org/
https://doi.org/10.1145/130283.130294
https://docs.redis.com/latest/stack/deprecated-features/graph/
https://docs.redis.com/latest/stack/deprecated-features/graph/
https://doi.org/10.1145/3428279
https://arxiv.org/abs/1508.03843
https://doi.org/10.1109/ICSE48619.2023.00175
https://www.tigergraph.com
https://github.com/tinkerpop/blueprints/wiki/tinkergraph
https://github.com/tinkerpop/blueprints/wiki/tinkergraph
https://doi.org/10.1145/3611643.3616295
https://doi.org/10.1145/3533767.3534409

	Abstract
	1 Introduction
	2 Background
	2.1 Labeled Property Graph in GDBMS
	2.2 Query Languages in GDBMS
	2.3 Query Rewriting

	3 APPROACH
	3.1 Abstract Syntax Graph (ASG)
	3.2 ASG Parsing
	3.3 Random Walk Covering

	4 Implementation
	4.1 Implementation Overview
	4.2 Graph Generation
	4.3 Base Query Generator
	4.4 Equivalent Query Rewriter and Validation Rules

	5 Evaluation
	5.1 Experimental Setting
	5.2 Detecting Previously Unknown Bugs
	5.3 Test Cases Analysis
	5.4 Analytical Comparison with Existing Techniques
	5.5 Empirical Comparison with Existing Techniques

	6 DISCUSSION
	6.1 Threats to Validity
	6.2 Equivalent Queries Generated by RWC

	7 RELATED WORK
	8 CONCLUSION
	9 Data Availability
	Acknowledgments
	References

