
Finding Logic Bugs in Graph-processing
Systems via Graph-cutting

Qiuyang Mang 1 Jinsheng Ba 2 Pinjia He 1 Manuel Rigger 3

1The Chinese University of Hong Kong, Shenzhen 2ETH Zurich 3National University of Singapore

Overview

Abstract Graph-processing systems, including Graph Database Management Systems (GDBMSes) and graph libraries, are designed to analyze and manage graph data efficiently. They are widely used
in applications such as social networks, recommendation systems, and fraud detection. However, logic bugs in these systems can lead to incorrect results, compromising the reliability of applications.
While recent research has explored testing techniques specialized for GDBMSes, it is unclear how to adapt them to graph-processing systems in general. This paper proposes Graph-cutting, a
universal approach for detecting logic bugs in both GDBMSes and various algorithms in graph libraries. Our key idea is inspired by the observation that certain graph patterns are critical for various
graph-processing tasks. Dividing graph data into subgraphs that preserve those patterns establishes a natural relationship between query results on the original graph and its subgraphs, allowing for the
detection of logic bugs when this relationship is violated. We implemented Graph-cutting as a tool, Gslicer, and evaluated it on 3 popular graph-processing systems, NetworkX, Neo4j, and Kùzu.
Gslicer detected 39 unique and previously unknown bugs, out of which 34 have been fixed and confirmed by developers. At least 8 logic bugs detected by Gslicer cannot be detected by baseline
strategies. Additionally, by leveraging just a few concrete relationships, Graph-cutting can cover over 100 APIs in NetworkX. We expect this technique to be widely applicable and that it can be
used to improve the quality of graph-processing systems broadly.

① Graph Generator

G

Random cutting

G (1) G (2)

LOSSY-CUTTING

G

Merging

G (1) G (2)

LOSSLESS-CUTTING

Graph data G

Graph data G (1)

Graph data G (2)

The target graph-processing system
MATCH (a:user)-[]->(b:item) RETURN COUNT(*);

gds.alpha.triangles();
...

② Query Generator

Executing queries
gds.alpha.triangles();

Return results

③ Results Validator

Cutting edges ℇ

Oracle
specification

triangles(G)

triangles(G (1))

triangles(G (2))

Removing triangles containing cutting edges

triangles(G)’

triangles(G (1))
∪

triangles(G (2))

?
=

Sets union

YES

NO

Figure 1. An overview of Gslicer

A motivated example

Figure 2. A motivated logic bug: incorrect triangle listing in Neo4j when the input graph contains
multiple relation types.

Challenges in automatically detecting such bugs in graph-processing systems
1 Effectiveness. Existing methods rely on query-mutation, but they are not feasible for

testing such functions due to the fixed input formats.
2 Generalizability. Requires a general test oracle that can cover multiple functionalities

with minimal engineering effort.

We addressed these challenges by mutating the data rather than the query.

Missing the triangle of {5, 6, 7}

Figure 3. An illustrative example of how Graph-cutting identifies the logic bug in Neo4j’s
triangle listing involves dividing the nodes into two sets: {0, 1, 2, 3, 4, 9} and {5, 6, 7, 8}. The
triangle (5, 6, 7) in Figure 2 contains none of the cutting edges but is missing in both subgraph
results, indicating a logic bug.

Scan the QR code to see the bug report ,

Behind the example
Given a graph G = (V, E), we divide the vertices in G into two disjoint sets, V (1) and V (2). The
corresponding induced subgraphs are G(1) = (V (1), E(1)) and G(2) = (V (2), E(2)). We then define
the set of cutting edges, which belong to neither of the two subgraphs, as E .

Theorem 1 (Graph-Cutting for triangle listing). For any graph G and its division
G(1), G(2), E , let Triangles(G) be the set of triangles (aka 3-cliques) in G We have

Triangles(G) = Triangles(G(1)) ∪ Triangles(G(2)) \ triangles containing edges in E .

Deliberately dividing the graph without any cutting edges (i.e., E = ∅) if we cannot infer the
last term from the results, e.g., testing triangle counting.

Generalization

1 Triangle Listing ⇒ Graph Pattern Matching ⇒ GDBMS Query
2 Testing graph libraries (e.g., NetworkX) through automatic enumeration of graph-cutting

oracles or manual design with minimal engineering effort.

1 2 3 4 5 6 7 8 9

50

100

150

No. oracle specifications

N
o.

co
ve

re
d

A
PI

s

Figure 4. The relationship between the number of Graph-cutting oracles and the number of
APIs in NetworkX covered by them.

Results

Table 1. Bugs status in graph-processing systems.
Graph-processing system Fixed Confirmed Duplicate Unconfirmed Sum
Neo4j 3 0 1 0 4
NetworkX 10 12 1 2 25
Kùzu 5 4 1 0 10
Sum 18 16 3 2 39

Table 2. Classification of fixed or confirmed bugs.
Graph-processing system Logic bugs Crashes/Exceptions Hang bugs Sum
Neo4j 2 1 0 3
NetworkX 4 18 0 22
Kùzu 5 3 1 9
Sum 11 22 1 34

Bug example

1

0

2

3

7

4

56

person

knows

Figure 5. Incorrect pattern matching in Kùzu caused by erroneous planning of
Worst-Case-Optimal Join

Scan the QR code to see the PR ,

Conclusion

1 Graph-cutting is a general black-box testing method for various graph-processing tasks.
It is simple, intuitive, and easy to apply.

2 Graph-cutting is complementary to existing query-mutation approaches by executing
the same query over different graph structures.

3 Graph-cutting can be applied to test both GDBMS queries and APIs.

Code Bug List

ACM SIGMOD Conference 2025, Berlin, Germany June 25, 2025 qiuyangmang@link.cuhk.edu.cn

mailto:myemail@exampl.com

